<big id="lg72i"></big>

      <output id="lg72i"><ruby id="lg72i"></ruby></output>
    1. <acronym id="lg72i"></acronym>

        <thead id="lg72i"><sup id="lg72i"></sup></thead>
        <big id="lg72i"></big>
        <td id="lg72i"><menuitem id="lg72i"></menuitem></td>
            1. 山西康特尔精细化工有限责任公司
              电话0359-4628888 4628999
              邮箱[email protected]
              Q Q 814414048
              总?#24247;?#22336;山西省运城?#22411;?#33635;县恒磁工业园区华?#30340;?#36335;7号
              新闻中心

              混凝土防冻剂的作用

              添加日期2014-3-27 17:33:03 访问?#38382;?906次

              我国地域辽阔在长江中下游、东北、华北、及内蒙、青海、新疆等地冬季气温都在-5≧以下。低温对混凝土十分不利在这些地区的混凝土的破坏多数与冻融作用有关混凝土在冻融循环作用下破坏是关系到建筑物使用寿命、工程质量、安全等方面的重大问题。冻融破坏是混凝土水工建筑物损坏的主要?#38382;?#20043;一冻融破坏严重影响水工建筑的正常运行必须充分认识它的严重性了解其破坏原因采取正确的设计、施工和管理措施以减轻冻融破坏对建筑物的影响就此问题国内外混凝土专家对混凝土抗冻问题的研究日益重视各自理论不断提出各?#22336;?#27861;不断采用?#21058;?#22270;通过对混凝土受冻机理研究而?#19994;?#25552;高混凝土抗冻性能的更有效、更经济、更实用的方法。

              1国内外关于混凝土受冻机理的研究状况如下

              1.1水转化为冰的相变过程

                 常温下硬化混凝土是由未水化的水泥、水泥水化产物、集料、水、空气共同组成的气--固三相平衡体系当混凝土处于负温下?#20445;?#20854;内部孔隙中的水分将发生从?#21512;?#21040;固相的转变。对混凝土受冻破坏的现象人们最初仅仅是以水结冰时体积膨胀9%这一自然现象来解释认为这种现象和盛满水的密闭容器受冻后?#22303;?#30340;破坏情况类似。当孔溶液体积超过91%?#20445;?#28342;液结冰后产生膨胀压力使混凝土结构破坏。但这种过于简单的观点无法解释复杂的混凝土受冻破坏的动力学过程。而且试验表明水饱和度低于91%?#20445;?#28151;凝土?#37096;?#33021;受冻破坏。这说明混凝土受冻破坏的机理?#23545;?#19981;止这么简单。大量的研究表明影响混凝土受冻破坏的原因很多其机理相当复杂。但从本质上说混凝土受冻破坏主要取决于混凝土中水的存在?#38382;宗?SPAN lang=EN-US>

              1.2 混凝土中水的存在?#38382;?#21450;空隙中饱水程度

                 在混凝土硬化初期混凝土中水存在?#38382;?SPAN lang=EN-US>

                 1结晶水。如?#21697;?#30707;等晶体中所含的水?#24179;?#26230;水这部分水是不可能结冰的。

                 2吸附水。也称凝胶水存在于各种水化物如?#21697;?#30707;的胶凝孔中因凝胶孔尺寸很小?#35805;?#20026;15!20!之间仅比水分子大一个数量级可认为在自然条件下这部分水是不可能结冰的。

                 3毛细孔水。存在于毛细孔中这部分水?#24378;?#20923;的。由开文公式rtlnpr/po=m/d2σ/r式中r为气体常数t为绝对温度pr为曲率半径为γ的毛细管中液体的蒸汽压po为大体积液体的蒸汽压d为水的密度殺为表面张力r为毛细管中的液体曲率半径。得知随毛细孔半径的减小水蒸气的冰点也随之下降。例如半径为5!的孔中纯水冰点为-5≧而半径为115!孔中水要到-70≧才结冰。

                 4游离水。也称自由水存在于各种固体颗粒之间?#24378;?#20923;水。由此可见混凝土冻害是由于游离水?#28034;?#24452;较大的毛细水结冰造成的。水转化为冰体积约增大9%若硬化混凝土孔隙中的游离水达到饱和则会在混凝土内部产生内应力使混凝土结构发生破坏。

                 另一种类似的说法这样表述混凝土是一种水泥石粗细骨料和各种气孔组成的多相复合材料其中孔径在一定尺寸以上的毛细孔和混凝土拌合物拌和时裹入的大气孔在含水时受冻是造成混凝土受冻破坏的主要原因。当温度降低到0≧以下的某一温度?#20445;?#30001;于混凝土孔隙内的水受冻而结冰对水泥石产生了膨胀压力当这种膨胀压力过大而超过了水泥石的抗拉强度?#20445;?#27700;泥石就会受到损害如产生微裂缝甚至于破坏。在一定负温下混凝土受冻程度除了与水泥石本身强度有关外还与混凝土孔隙、及孔隙中饱水程度有关尤其?#24378;?#32467;构对混凝土抗冻性影响最大。混凝土中的孔隙?#35805;?#20998;为水泥石中的凝胶孔、毛细孔和大气孔等三种因此凝胶孔不受冻害孔径较小的毛细孔约320!以下由于其中水冰点极低?#35805;?#19981;也不受冻害而1000!以上的毛细?#33258;?#21463;冻融作用影响大气孔中的水结冰是混凝土受冻破坏的最主要危害因素。此理论基本上同于上一理论混凝土中水的存在?#38382;?#26159;由混凝土的孔隙结构决定的混凝土中的毛细孔水和游离水也就是?#22797;?#22312;于大气孔中的水分。而混凝土受冻害程度与孔隙中饱水程度有关也就?#24378;隙?#20102;水转化成冰相变过程的说法。

              1.3静水?#36141;?#28183;透压假说

                 静水压理论混凝土在潮湿条件下首先毛细孔吸满水混凝土在搅拌成型时都会带一些大的空气泡这些空气泡内壁也能吸附水但在常压下很?#30416;?#28385;水总还能留有没有水的空间。在低温下毛细孔中水结成冰体积膨胀趋向于?#30416;?#20923;水推向大的空气泡方向流动这就形成静水压力。

                 渗透压是由孔内冰与未冻水两相的自由能之差引起的。冰的饱和蒸汽压小于水的。这个蒸汽压的差别推动未冻水向冻结区迁移这就是渗透压。

                 冻融循环对混凝土的破坏是水转变为冰的体积膨胀造成的静水压力和冰水蒸汽压差别所造成的渗透压力共同作用的结果。对于两者何者是冻坏主要原因许多学者持不同见解。湖南大学的李天援从理论分析计算着手及客观存在的实验现象出发来论证静水?#36141;?#28183;透压大小危害作用及程?#21462;?#26368;后得出静水压是混凝土冻害的主要因素。这一理论是在?#38553;?#28151;凝土的孔隙结?#36141;?#28151;凝土中水的存在?#38382;?#30340;基础上进一步加深了对混凝土受冻机理的研究把力学观点和数学运算应用于此使得关于混凝土的受冻机理的理解更加科学化。

              1.4冻融临界饱水值

                 瑞士fagerland曾提出^冻融临界饱水值法 ̄。此法基本思想认为混凝土能够容纳的可冻结水含量存在一个临界值当内部水量未达到临界值?#20445;?#21363;使出现冻害环境混凝土也不会冻坏到达临界值之后混凝土将迅速破坏。

                 根据power多年试验与理论研究认为对混凝土冻融破坏最大的因素是冻结温?#21462;?#38477;温速度和饱水程度或饱和度尤以饱水程度影响为最甚。水是造成混凝土受冻破坏的主要原因?#20013;?#30340;有抗冻要求的混凝土都要对其水灰比做出限制水灰比越小其抗冻性?#33014;?#22914;果混凝土中的孔隙水都达不到饱和也就不存在冻?#25512;?#22351;及水分迁移因此^冻融临界饱水值法?#20445;?#20063;是基于上述理论的补充说明。

              1.5水分迁移?#26696;?#29157;

                 早在五六十年代美国着名水泥混凝土专家t.c.powers曾总结了许多学者工作提出了混凝土早期受冻模型宏观模型析冰即冻胀现象这个观点是以土壤冻胀的taber-collins学说引进混凝土的。该学?#31561;?#20026;冰冻的原因基本不是简单的受冻膨胀而主要来自于水分的迁移使得冰晶增大产生压力致使结构破坏。

                  1990年来华讲学的国际建研联冬施委员会秘书长原苏联学者拉高一达对新拌混凝土立即受冻提出了新的试验结果即立即受冻w/c=0.4的迁移比w/c=0.7严重经分析认为水分迁移是造成立即受冻混凝土结构损伤的主要原因。

                 黑龙江省低温建筑研究所在80年代初期对立即受冻?#32960;?#28151;凝土作过系统研究认为迁移导致结冰使混凝土结构造成终身损害。

                 沈阳建筑工程学院的张巨松在承认迁移是冻害的一个原因外提出了干燥也对早期冻害起一定作用即水分迁移导致两种结果一是增加了表面区域内形成的冰晶产生了结晶压力破坏了混凝土结构均匀性对已形成的结构产生破坏作用二是混凝土内部没有生成冰晶但迁移使得混凝土内部产生干燥破坏。对于不饱和的一个冻融结冰和干燥这两种破坏因素对不同的发展阶段混凝土的作用是不同的。立即受冻的混凝土是以迁?#24179;?#20912;造?#23665;?#26500;不均?#20219;?#20027;因此时混凝土尚处于塑性阶?#21361;?#36801;移导致内部的干燥收缩不致使混凝土结构破坏。

                 相反预养受冻的破坏除了可能产生上述的结晶破?#20302;癸?#24178;燥破坏是不可忽视的因素因为此时混凝土内部完全没有生成冰晶实际工程中的混凝土受冻不是一次冻结。立即受冻的混凝土即产生严重的迁?#24179;?#20912;随着转入正温结构的发展又承受了严重的干燥破坏。所以预养时间越短最终结构损伤越大。

                 这一部分的叙述主要是针对于早期受冻的混凝土对混凝土受冻过程进行了更进一步的区分。混凝土早期受冻是指混凝土在养护硬化期间受冻在此期间混凝土中的水分较成龄混凝土多因此水分迁移对混凝土结构的破坏较严重。而迁移造成的干燥严重影响了混凝土正常养护和强度增长。

                 综上所述混凝土受冻破坏主要是一种力学?#24418;?#21363;水的运动对混凝土结构的影响。混凝土可冻水在结冰时体积膨胀而产生?#21496;?#27700;压、渗透压、水分迁移促使结构破坏。同时也提到一些相关因素混凝土水的存在?#38382;宗?#39281;水程?#21462;?#24178;燥程度等。通过对混凝土抗冻机理的进一步了解相信我们会?#39029;?#26356;加完善的方案来提高混凝土的抗冻性能。

              2混凝土防冻外加剂

                 使用防冻外加剂就是一种有效地提高混凝土抗冻性的措施。负温对混凝土十分不利其一是施工周期长。其二是影响工程质量。使用防冻剂是寒冷地区保证混凝土冬期施工质量节省能源降低工程造价的有效措施。加入外加剂进行混凝土冬季施工其主要作用有以下几点

                 1降?#22303;?#28151;凝土早期受冻的临界强?#21462;?#24635;的?#27492;?#25530;外加剂后可使临界强度降低20%30%r28这就大大的缩短了混凝土的养护时间降?#22303;?#20859;护的造价缩短了施工周期。

                 2促使新拌混凝土内固相水-冰的结晶畸变。掺外加剂混凝土中?#21512;?#30340;固化实际上是把一部分水^贮存 ̄起来随着结冰的进程由于?#21512;?#30340;减少使外加剂的浓度不断增大与?#36865;保?#19968;部分水用于水泥的水化并结合于水化物中也使浓度增加冰点下降当外加剂溶液的浓度在混凝土?#21512;?#20013;接近平衡?#20445;?#21017;水泥所需要的水量就由溶冰来获得。其结果是混凝土中的含冰量逐渐减少并直到消失。

                 3改变混凝土的孔结构。无论是新浇混凝土还是硬化混凝土的抗冻性均与混凝土的孔结构有关。通过引气外加剂使混凝土具有一定的空气含量从而?#32435;?#28151;凝土的孔结构可以提高其耐久性及抗早期受冻的能力。

                 4提高混凝土早期强?#21462;?#26089;强作用主要是改变水泥中硅酸盐的溶解性从而加速了水泥混凝土的硬化并生成了复式及碱性的水化生成物。生成的水化物结晶在某种程度上?#22270;?#24378;了水泥浆的结构形成作用使新浇混凝土较快地达到临界强?#21462;?SPAN lang=EN-US>

                 5改变了混凝土水灰比及降低混凝土拌合物的用水量。水灰比影响混凝土的孔结构及结构形成过程因此冬期施工力图通过外加剂的减水增塑作用不断降低混凝土的水灰?#21462;?#20026;了满足冬季施工的要求国内外科学工作者对防冻剂?#38469;?#36827;行了不懈的研究和追求取得了一系列令人满意的结果防冻理论日渐完善防冻剂产品和品种得到了长足的发展冬期施工中可使用的外加剂除防冻剂以外还有引气剂、减水剂、早强剂等常常将它们复合使用。

              2.1引气剂

                 引气剂的?#32679;?#21487;在混凝土中产生适量的闭合微小气泡?#32435;?#28151;凝土结构有助于混凝土抵抗早期冻害。当水受冻膨胀时产生的附加孔隙可起缓冲作用减少破坏因而能增加混凝土的抗冻性。

                 混凝土中?#32679;?#24341;气剂后引入大量均?#21462;?#31283;定而封闭的微小气泡这些微小封闭气泡互不连通、均?#20219;?#23450;分布在混凝土中当孔隙内自由水冻结?#20445;?#27668;泡被压缩可大为减轻冰冻给孔隙带来的胀压力溶解时这些气泡可恢复原状因此孔隙内自由水反复冻融也不致对孔壁产生很大的压力。这些气泡在混凝土中起类似滚珠的作用可使混凝土的流动性大为?#32435;藤?#25552;高了混凝土的和易性减少泌水和分离。由于和易性?#32435;藤?#21487;以降低混凝土的单位用水量在水泥用量不变的情况可以弥补部分由于引气而致的强度损失。只要引气量合适?#32960;?#28151;凝土?#37096;?#20197;获得非常高的抗冻性能。

                 引气剂用于提高混凝土的抗冻性已有多年的历史长期以来它的功能主要?#36824;?#32467;于气泡卸压这一物理作用。气泡的物理作用和引气剂的表面化学作用同为引气混凝土抗冻性提高所不可忽略的原因。

              2.2减水剂

                 它可以不改变和易性增大混凝土熟料的流动性从而减少混凝土的拌和用水量降低水灰比因而减少由于水冻结而产生的结构缺陷的机会并可强化混凝土的硬化过程。?#32679;?#20943;水剂能够?#32435;?#28151;凝土的工作性使更易于浇筑成型从而使混凝土的密实度增加泌水率减小混凝土内外分层现象减轻避免混凝土表层冻酥及在钢筋石子周围形成冰膜混凝土的水灰比减小混凝土内的气泡?#26412;矯图?#36317;相应减小有利于提高抗冻性。高效减水剂对水泥的分散作用可提高早强组分和防冻组分的作用效果。

                 减水剂具有分散的作用它能够使水泥成为细小的、彼此分离的单个粒子均匀的分散于水中还能使水泥微粒表层形成一层稳定的水膜而增加混凝土拌合物的和易性减少水泥用量。因此减水剂有?#32435;?#28151;凝土的空隙结构增强耐久性的能力。由于减水剂减少了混凝土中的含水量的作用并能使冰晶粒度细小且分散从而减弱了含冰量对混凝土结构的破坏作用。

              2.3早强剂

                 可缩短水泥的凝结时间加速混凝土强度增长及水泥的早期放?#30830;从Α?SPAN lang=EN-US>

                 早强剂作用?#28023;?SPAN style="COLOR: rgb(0,0,0); FONT-SIZE: 14px" lang=EN-US>1加速水泥水化。使水泥矿物中的c3sc3a与水迅速?#20174;Γ?#29983;成?#21697;?#30707;晶体和?#21697;?#30707;凝胶较早达到临界强度以抵抗水结冰时的冰胀应力。2降低冰点。?#29615;?#38754;早强剂也是电解质另?#29615;?#38754;因大量的游离水成为结合水使防冻剂的浓度增大提高了混凝土的早期强度为混凝土提前进入抗冻临界强度创造条件。

                 对我国各种防冻剂成分调查发现其组成成分不能单一必须是多种成分复合而成。高效减水剂、早强剂、引气剂等多种成分复合使用相互弥补各自的缺点和充?#22336;?#25381;各自的作用这样才能做到使防冻剂具有抗冻、早强、阻锈、催化等综合作用才能获得最佳效果。高效防冻剂是基于大幅度的减少造成冻害的根本提高混凝土早期强度提高毛细管中防冻剂浓度和细化毛细管径等多种降低冰点的方法及引入适量气相降低冻胀应力为配置依据的。

                 上述关于冻害机理及防冻外加剂的叙述是密切相关的只有更透彻的了解混凝土的冻害机理才能在此基础上不断的研究和生产出更多更优质的防冻外加剂才能不断提高混凝土的抗冻性延长冬季施工时间提高冬期施工质量节省冬季施工费用创造更大的经济效益。

              山西康特尔精细化工有限责任公司 SHAN XI KANG TE ER FINE CHEMICAL CO., LTD. © 2014-2014 版权所有
              总?#24247;?#22336;山西省运城?#22411;?#33635;县恒磁工业园区华?#30340;?#36335;7号 网址www.nteb.tw 电话0359-4628888 4628999 邮箱[email protected]
              ?#38469;?#25903;持正方元科技山西网站建设、山西?#21387;?#25512;广
              后台管理
              嶄牽科褒弼白嶄襲催
              <big id="lg72i"></big>

                <output id="lg72i"><ruby id="lg72i"></ruby></output>
              1. <acronym id="lg72i"></acronym>

                  <thead id="lg72i"><sup id="lg72i"></sup></thead>
                  <big id="lg72i"></big>
                  <td id="lg72i"><menuitem id="lg72i"></menuitem></td>
                      1. <big id="lg72i"></big>

                          <output id="lg72i"><ruby id="lg72i"></ruby></output>
                        1. <acronym id="lg72i"></acronym>

                            <thead id="lg72i"><sup id="lg72i"></sup></thead>
                            <big id="lg72i"></big>
                            <td id="lg72i"><menuitem id="lg72i"></menuitem></td>